RoHS Compliant

Serial ATA Flash Drive

SFD18A-M Product Specifications (Toshiba 15nm)

October 18, 2016

Version 1.5

Apacer Technology Inc.

1F, No.32, Zhongcheng Rd., Tucheng Dist., New Taipei City, Taiwan, R.O.C Tel: +886-2-2267-8000 Fax: +886-2-2267-2261 www.apacer.com

Features:

Compliance with SATA Revision 3.1

- SATA 6.0 Gbps interface
- Backward compatible with SATA 1.5 and 3.0 Gbps interfaces
- ATA-8 command set

Capacity

- 32, 64, 128, 256, 512 GB

Performance*

- Interface burst read/write: 600 MB/sec
- Sustained read: up to 510 MB/sec
- Sustained write: up to 380 MB/sec
- Random read 4K: up to 82,000 IOPS
- Random write 4K: up to 81,000 IOPS

• Flash Management

- Built-in hardware ECC
- Static/dynamic wear leveling
- Flash bad-block management
- S.M.A.R.T.
- Power Failure Management
- ATA Secure Erase
- TRIM

• NAND Flash Type: MLC

• Endurance (in Terabytes Written: TBW)

32 GB: 69 TBW
64 GB: 139 TBW
128 GB: 278 TBW
256 GB: 556 TBW
512 GB: 1,112 TBW

• Temperature Range

Operating:

Standard: 0°C to 70°C Extended: -40°C to 85°C Storage: -40°C to 100°C

Supply Voltage

3.3V & 5V

• Power Consumption*

Active mode: 655 mA

Idle mode: 75 mA

• Form Factor

- 1.8 inch (78.5 x 54 x 5, unit: mm)

Connector

- 7-pin SATA male connector
- 9-pin SATA power connector

Shock & Vibration**

Shock: 1,500 GVibration: 15 G

• SATA Power Management Mode

- Device Sleep Mode (optional)
- RoHS Compliant

^{*}Varies from capacities. The values addressed here are typical and may vary depending on settings and platforms.

^{**}Non-operating

Table of Contents

1. Product Description	3
1.1 Introduction	3
1.2 Capacity Specifications	3
1.3 Performance	3
1.4 Pin Assignments	4
2. Software Interface	6
2.1 Command Set	6
2.2 S.M.A.R.T	6
3. Flash Management	8
3.1 Error Correction/Detection	8
3.2 Bad Block Management	8
3.3 Wear Leveling	8
3.4 Power Failure Management	8
3.5 ATA Secure Erase	8
3.6 TRIM	9
3.7 SATA Power Management	9
4. Reliability Specifications	10
4.1 Environmental	10
4.2 Mean Time Between Failures (MTBF)	10
4.3 Certification and Compliance	10
4.4 Endurance	10
5. Electrical Characteristics	11
5.1 Operating Voltage	11
5.2 Power Consumption	11
6. Mechanical Specifications	12
7. Product Ordering Information	13
7.1 Product Code Designation	13
7.2 Valid Combinations	1.4

1. Product Description

1.1 Introduction

Apacer's SFD18A is a well-balanced solid-state disk (SSD) drive with standard form factor and great performance. Designed in SATA 6.0 Gbps interface, the SSD is able to deliver exceptional read/write speed, making it the ideal companion for heavy-loading industrial or server operations. In regard of reliability, the drive comes with various implementations including powerful hardware ECC engine, power saving modes, wear leveling, flash block management, S.M.A.R.T., TRIM, and power failure management.

1.2 Capacity Specifications

Table 1-1 Capacity Specifications

Capacity	Total Bytes*	Cylinders	Heads	Sectors	Max LBA*
32 GB	32,017,047,552	16,383	16	63	62,533,296
64 GB	64,023,257,088	16,383	16	63	125,045,424
128 GB	128,035,676,160	16,383	16	63	250,069,680
256 GB	256,060,514,304	16,383	16	63	500,118,192
512 GB	512,110,190,592	16,383	16	63	1,000,215,216

^{*}Display of total bytes varies from file systems.

1.3 Performance

Table 1-2 Performance

Performance Capacity	32 GB	64 GB	128 GB	256 GB	512 GB
Sustained Read (MB/s)	340	375	510	505	505
Sustained Write (MB/s)	100	85	380	350	355
Random Read IOPS (4K)	48,000	45,000.	81,000	82,000	82,000
Random Write IOPS (4K)	24,000	22,000	81,000	80,000	72,000

Note: Performance varies from flash configurations or host system settings.

IOPS: measured on 8GB span (16777216 sectors Disk Size), 32 Outstanding I/Os (QD=32), Full Random Data pattern, 4KB Align I/Os and test durations 15minutes.

^{**}Cylinders, heads or sectors are not applicable for these capacities. Only LBA addressing applies.

LBÁ count addressed in the table above indicates total user storage capacity and will remain the same throughout the lifespan of the device. However, the total usable capacity of the SSD is most likely to be less than the total physical capacity because a small portion of the capacity is reserved for device maintenance usages.

1.4 Pin Assignments

Table 1-3 describes SAFD 18P signal segment, and Table1-4, its power segment.

Figure 1-1 Micro-SATA Connectors

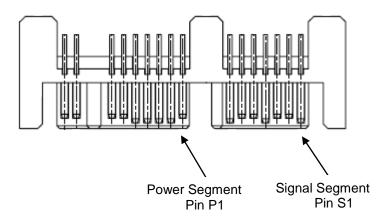


Table 1-3 Signal Segment

Name	Туре	Description
S1	GND	
S2	RxP	+ Differential Receive Signal
S3	RxN	- Differential Receive Signal
S4	GND	
S5	TxN	- Differential Transmit Signal
S6	TxP	+ Differential Transmit Signal
S7	GND	

Table 1-4 Power Segment

Pin	Туре	Signal/Description
P1	V33	3.3 V Power
P2	V33	3.3 V Power
P3	GND	
P4	GND	
P5	V5	5 V Power
P6	V5	5 V Power
P7	GND	Reserved
P8	Optional	NC
P9	Optional	DEVSLP

Figure 1-2 SATA Cable/Connector Connection Diagram

The connector on the left represents the Host with TX/RX differential pairs connected to a cable. The connector on the right shows the Device with TX/RX differential pairs also connected to the cable. Notice also the ground path connecting the shielding of the cable to the Cable Receptacle.

2. Software Interface

2.1 Command Set

Table 2-1 summarizes the ATA commands supported by SFD18A.

Table 2-1 Command Set

Code	Command	Code	Command
E5h	Check Power Mode	F6h	Security Disable Password
90h	Execute Diagnostics	F3h	Security Erase Prepare
E7h	Flush Cache	F4h	Security Erase Unit
ECh	Identify Device	F5h	Security Freeze Lock
E3h	Idle	F1h	Security Set Password
E1h	Idle Immediate	F2h	Security Unlock
91h	Initialize Device Parameters	7Xh	Seek
C8h	Read DMA	EFh	Set Features
25h	Read DMA EXT	C6h	Set Multiple Mode
60h	Read FPDMA Queued	E6h	Sleep
47h	Read Log DMA EXT	B0h	S.M.A.R.T.
2Fh	Read Log EXT	E2h	Standby
C4h	Read Multiple	E0h	Standby Immediate
20 or 21h	Read Sector(s)	CAh	Write DMA
40 or 41h	Read Verify Sector(s)	35h	Write DMA EXT
10h	Recalibrate	61h	Write FPDMA Queued
57h	Write Log DMA EXT	3Fh	Write Log EXT
C5h	Write Multiple	30h or 31h	Write Sector(s)

2.2 S.M.A.R.T.

S.M.A.R.T. is an abbreviation for Self-Monitoring, Analysis and Reporting Technology, a self-monitoring system that provides indicators of drive health as well as potential disk problems. It serves as a warning for users from unscheduled downtime by monitoring and displaying critical drive information. Ideally, this should allow taking proactive actions to prevent drive failure and make use of S.M.A.R.T. information for future product development reference.

Apacer devices use the standard SMART command B0h to read data out from the drive to activate our S.M.A.R.T. feature that complies with the ATA/ATAPI specifications. S.M.A.R.T. Attribute IDs shall include initial bad block count, total later bad block count, maximum erase count, average erase count, power on hours and power cycle. When the S.M.A.R.T. Utility running on the host, it analyzes and reports the disk status to the host before the device reaches in critical condition.

Note: Attribute IDs may vary from product models due to various solution design and supporting capabilities.

Apacer memory products come with S.M.A.R.T. commands and subcommands for users to obtain information of drive status and to predict potential drive failures. Users can take advantage of the following commands/subcommands to monitor the health of the drive.

Code	SMART Subcommand
D0h	READ DATA
D1h	READ ATTRIBUTE THRESHOLDS
D2h	Enable/Disable Attribute Autosave
D4h	Execute Off-line Immediate
D5h	Read Log (optional)
D6h	Write Log (optional)
D8h	Enable Operations
D9h	Disable operations
DAh	Return Status

General SMART attribute structure

Byte	Description
0	ID (Hex)
1 – 2	Status flag
3	Value
4	Worst
5*-11	Raw Data

*Byte 5: LSB

SMART attribute ID list

ID (Hex)	Attribute Name
9 (0x09)	Power-on hours
12 (0x0C)	Power cycle count
163 (0xA3)	Max. erase count
164 (0xA4)	Avg. erase count
166 (0xA6)	Total later bad block count
167 (0xA7)	SSD Protect Mode (vendor specific)
168 (0xA8)	SATA PHY Error Count
175 (0xAF)	Bad Cluster Table Count
192 (0xC0)	Unexpected Power Loss Count
194 (0xC2)	Temperature
241 (0xF1)	Total sectors of write

3. Flash Management

3.1 Error Correction/Detection

SFD18A implements a hardware ECC scheme, based on the BCH algorithm. It can detect and correct up to 40 bits error in 1K bytes.

3.2 Bad Block Management

Current production technology is unable to guarantee total reliability of NAND flash memory array. When a flash memory device leaves factory, it comes with a minimal number of initial bad blocks during production or out-of-factory as there is no currently known technology that produce flash chips free of bad blocks. In addition, bad blocks may develop during program/erase cycles. When host performs program/erase command on a block, bad block may appear in Status Register. Since bad blocks are inevitable, the solution is to keep them in control. Apacer flash devices are programmed with ECC, block mapping technique and S.M.A.R.T to reduce invalidity or error. Once bad blocks are detected, data in those blocks will be transferred to free blocks and error will be corrected by designated algorithms.

3.3 Wear Leveling

Flash memory devices differ from Hard Disk Drives (HDDs) in terms of how blocks are utilized. For HDDs, when a change is made to stored data, like erase or update, the controller mechanism on HDDs will perform overwrites on blocks. Unlike HDDs, flash blocks cannot be overwritten and each P/E cycle wears down the lifespan of blocks gradually. Repeatedly program/erase cycles performed on the same memory cells will eventually cause some blocks to age faster than others. This would bring flash storages to their end of service term sooner. Wear leveling is an important mechanism that level out the wearing of blocks so that the wearing-down of blocks can be almost evenly distributed. This will increase the lifespan of SSDs. Commonly used wear leveling types are Static and Dynamic.

3.4 Power Failure Management

Power Failure Management plays a crucial role when experiencing unstable power supply. Power disruption may occur when users are storing data into the SSD. In this urgent situation, the controller would run multiple write-to-flash cycles to store the metadata for later block rebuilding. This urgent operation requires about several milliseconds to get it done. At the next power up, the firmware will perform a status tracking to retrieve the mapping table and resume previously programmed NAND blocks to check if there is any incompleteness of transmission.

Note: The controller unit of this product model is designed with a DRAM as a write cache for improved performance and data efficiency. Though unlikely to happen in most cases, the data cached in the volatile DRAM might be potentially affected if a sudden power loss takes place before the cached data is flushed into non-volatile NAND flash memory.

3.5 ATA Secure Erase

ATA Secure Erase is an ATA disk purging command currently embedded in most of the storage drives. Defined in ATA specifications, (ATA) Secure Erase is part of Security Feature Set that allows storage drives to erase all user data areas. The erase process usually runs on the firmware level as most of the ATA-based storage media currently in the market are built-in with this command. ATA Secure Erase can securely wipe out the user data in the drive and protects it from malicious attack.

3.6 TRIM

TRIM is a SATA command that helps improve the read/write performance and efficiency of solid-state drives (SSD). The command enables the host operating system to inform SSD controller which blocks contain invalid data, mostly because of the erase commands from host. The invalid will be discarded permanently and the SSD will retain more space for itself.

3.7 SATA Power Management

By complying with SATA 6.0 Gb/s specifications, the SSD supports the following SATA power saving modes:

- ACTIVE: PHY ready, full power, Tx & Rx operational
- PARTIAL: Reduces power, resumes in under 10 μs (microseconds)
- SLUMBER: Reduces power, resumes in under 10 ms (milliseconds)
- HIPM: Host-Initiated Power Management
- DIPM: Device-Initiated Power Management
- AUTO-SLUMBER: Automatic transition from partial to slumber.
- Device Sleep (DevSleep or DEVSLP): PHY powered down; power consumption ≤ 5 mW; host assertion time ≤ 10 ms; exit timeout from this state ≤ 20 ms (unless specified otherwise in SATA Identify Device Log).

Note:

- 1. The behaviors of power management features would depend on host/device settings.
- 2. Device Sleep mode is optional, depending on product ordering selections.

4. Reliability Specifications

4.1 Environmental

SFD18A environmental specifications follow MIL-STD-810F, as indicated in the following table.

Table 4-1 Environmental Specifications

Environment	Specifications
T	0°C to 70°C (Operating); -40°C to 85°C (Extended)
Temperature	-40°C to 100°C (Non-operating)
Vibration	Non-operating: Sine wave, 15(G), 10~2000(Hz), Operating: Random, 7.69(Grms), 20~2000(Hz)
Shock	Non-operating: Acceleration, 1,500 G, 0.5 ms Operating: Peak acceleration, 50 G, 11 ms

4.2 Mean Time Between Failures (MTBF)

Mean Time Between Failures (MTBF) is predicted based on reliability data for the individual components in SFD drive. The prediction result for the SFD18A is more than 2,000,000 hours.

Note: The MTBF is predicated and calculated based on "Telcordia Technologies Special Report, SR-332, Issue 2" method.

4.3 Certification and Compliance

SFD18A complies with the following standards:

- CE
- FCC
- RoHS
- MIL-STD-810F

4.4 Endurance

The endurance of a storage device is predicted by TeraBytes Written based on several factors related to usage, such as the amount of data written into the drive, block management conditions, and daily workload for the drive. Thus, key factors, such as Write Amplifications and the number of P/E cycles, can influence the lifespan of the drive.

Capacity	TeraBytes Written
32 GB	69
64 GB	139
128 GB	278
256 GB	556
512 GB	1,112

Note:

- The measurement assumes the data written to the SSD for test is under a typical and constant rate.
- The measurement follows the standard metric: 1 TB (Terabyte) = 1,000 GB.
- This estimation complies with JEDEC JESD-219, enterprise endurance workload of random data with payload size distribution.

5. Electrical Characteristics

5.1 Operating Voltage

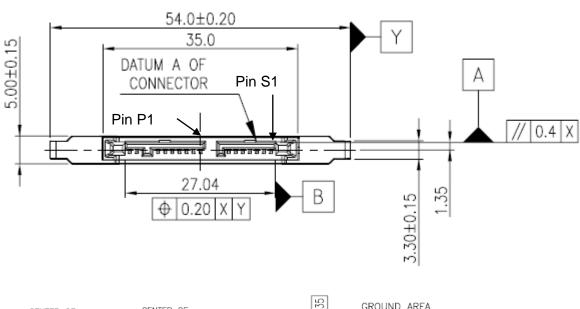
Table 5-1 lists the supply voltage for SFD18A.

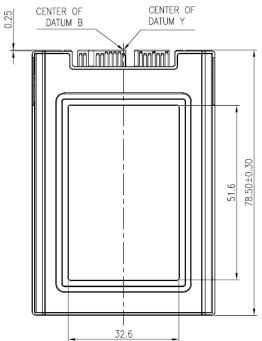
Table 5-1 Operating Voltage

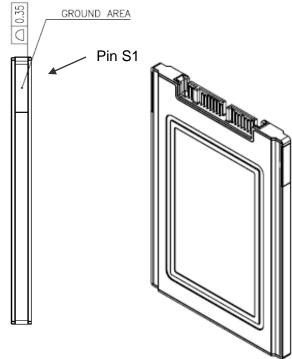
Parameter	Conditions		
Supply Voltage	$3.3V \pm 5\%$ (3.135-3.465V) / 5V ± 5% (4.75-5.25V)		

5.2 Power Consumption

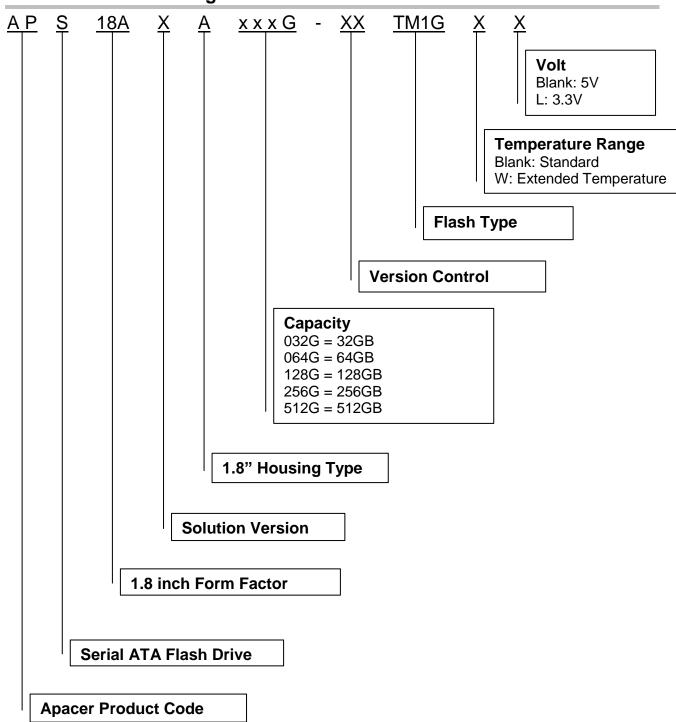
Table 5-2 lists the power consumption for SFD18A.


Table 5-2 Power Consumption (typical)


Mode	32 GB	64 GB	128 GB	256 GB	512 GB
Active (mA)	215	295	280	655	635
Idle (mA)	60	60	75	75	60


Note: Power consumptions may vary depending on settings and platforms.

6. Mechanical Specifications


Unit: mm

Tolerance: ± 0.2

7. Product Ordering Information

7.1 Product Code Designation

7.2 Valid Combinations

7.2.1 MLC-3.3V / Operating Temperature $(0^{\circ}\text{C} \sim 70^{\circ}\text{C})$

Capacity	No DEVSLP	DEVSLP
32GB	APS18A7A032G-6ATM1GL	APS18A7A032G-6BTM1GL
64GB	APS18A7A064G-6ATM1GL	APS18A7A064G-6BTM1GL
128GB	APS18A7A128G-6ATM1GL	APS18A7A128G-6BTM1GL
256GB	APS18A7A256G-6ATM1GL	APS18A7A256G-6BTM1GL
512GB	APS18AFA512G-A3TM1GL	APS18AFA512G-B3TM1GL

7.2.2 MLC-3.3V / Operating Temperature $(-40^{\circ}\text{C} \sim 85^{\circ}\text{C})$

	Capacity	No DEVSLP	DEVSLP
_	32GB	APS18A7A032G-6ATM1GWL	APS18A7A032G-6BTM1GWL
	64GB	APS18A7A064G-6ATM1GWL	APS18A7A064G-6BTM1GWL
	128GB	APS18A7A128G-6ATM1GWL	APS18A7A128G-6BTM1GWL
	256GB	APS18A7A256G-6ATM1GWL	APS18A7A256G-6BTM1GWL
	512GB	APS18AFA512G-A3TM1GWL	APS18AFA512G-B3TM1GWL

7.2.3 MLC-5V / Operating Temperature $(0^{\circ}C \sim 70^{\circ}C)$

_	Capacity	No DEVSLP	DEVSLP
	32GB	APS18A7A032G-6ATM1G	APS18A7A032G-6BTM1G
	64GB	APS18A7A064G-6ATM1G	APS18A7A064G-6BTM1G
	128GB	APS18A7A128G-6ATM1G	APS18A7A128G-6BTM1G
	256GB	APS18A7A256G-6ATM1G	APS18A7A256G-6BTM1G
	512GB	APS18AFA512G-A3TM1G	APS18AFA512G-B3TM1G

7.2.4 MLC-5V / Operating Temperature (-40°C ~ 85°C)

Capacity	No DEVSLP	DEVSLP
32GB	APS18A7A032G-6ATM1GW	APS18A7A032G-6BTM1GW
64GB	APS18A7A064G-6ATM1GW	APS18A7A064G-6BTM1GW
128GB	APS18A7A128G-6ATM1GW	APS18A7A128G-6BTM1GW
256GB	APS18A7A256G-6ATM1GW	APS18A7A256G-6BTM1GW
512GB	APS18AFA512G-A3TM1GW	APS18AFA512G-B3TM1GW

Note: Valid combinations are those products in mass production or will be in mass production. Consult your Apacer sales representative to confirm availability of valid combinations and to determine availability of new combinations.

Revision History

Revision	Description	Date
1.0	Official release	1/12/2016
1.1	Revised product ordering information due to FW change	2/17/2016
1.2	Added IOPS values	3/9/2016
1.3	Added 512GB support	6/23/2016
1.4	Added endurance ratings	7/19/2016
1.5	Revised Pin9 signal/description to DEVSLP	10/18/2016

Global Presence

Taiwan (Headquarters) Apacer Technology Inc.

1F., No.32, Zhongcheng Rd., Tucheng Dist.,

New Taipei City 236, Taiwan R.O.C.

Tel: 886-2-2267-8000 Fax: 886-2-2267-2261 amtsales@apacer.com

U.S.A. Apacer Memory America, Inc.

46732 Lakeview Blvd., Fremont, CA 94538

Tel: 1-408-518-8699 Fax: 1-510-249-9551 sa@apacerus.com

Japan Apacer Technology Corp.

5F, Matsura Bldg., Shiba, Minato-Ku

Tokyo, 105-0014, Japan Tel: 81-3-5419-2668 Fax: 81-3-5419-0018 jpservices@apacer.com

Europe Apacer Technology B.V.

Science Park Eindhoven 5051 5692 EB Son,

The Netherlands Tel: 31-40-267-0000 Fax: 31-40-267-0000#6199

sales@apacer.nl

China Apacer Electronic (Shanghai) Co., Ltd

Room D, 22/FL, No.2, Lane 600, JieyunPlaza, Tianshan RD, Shanghai, 200051, China

Tel: 86-21-6228-9939 Fax: 86-21-6228-9936 sales@apacer.com.cn

India Apacer Technologies Pvt Ltd,

Apacer Technologies Pvt Ltd, Unit No.201, "Brigade Corner", 7th Block Jayanagar,

Yediyur Circle, Bangalore - 560082, India

Tel: 91-80-4152-9061 Fax: 91-80-4170-0215 sales india@apacer.com